Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 14: 1187411, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37351510

RESUMO

The central nervous system (CNS) is the most complex system in human body, and there is often a lack of effective treatment strategies for the disorders related with CNS. Natural compounds with multiple pharmacological activities may offer better options because they have broad cellular targets and potentially produce synergic and integrative effects. Bryostatin-1 is one of such promising compounds, a macrolide separated from marine invertebrates. Bryostatin-1 has been shown to produce various biological activities through binding with protein kinase C (PKC). In this review, we mainly summarize the pharmacological effects of bryostatin-1 in the treatment of multiple neurological diseases in preclinical studies and clinical trials. Bryostatin-1 is shown to have great therapeutic potential for Alzheimer's disease, multiple sclerosis, fragile X syndrome, stroke, traumatic brain injury, and depression. It exhibits significant rescuing effects on the deficits of spatial learning, cognitive function, memory and other neurological functions caused by diseases, producing good neuroprotective effects. The promising neuropharmacological activities of bryostatin-1 suggest that it is a potential candidate for the treatment of related neurological disorders although there are still some issues needed to be addressed before its application in clinic.

2.
Biochem Pharmacol ; 212: 115543, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37037265

RESUMO

Sirtuin1 (SIRT1) is a conserved nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylase that plays key roles in a range of cellular events, including the maintenance of genome stability, gene regulation, cell proliferation, and apoptosis. P53 is one of the most studied tumor suppressors and the first identified non-histone target of SIRT1. SIRT1 deacetylates p53 in a NAD+-dependent manner and inhibits its transcriptional activity, thus exerting action on a series of pathways related to tissue homeostasis and various pathological states. The SIRT1-p53 axis is thought to play a central role in tumorigenesis. Although SIRT1 was initially identified as a tumor promoter, evidence now indicates that SIRT1 may also act as a tumor suppressor. This seemingly contradictory evidence indicates that the functionality of SIRT1 may be dictated by different cell types and intracellular localization patterns. In this review, we summarize recent evidence relating to the interactions between SIRT1 and p53 and discuss the relative roles of these two molecules with regards to cancer-associated cellular events. We also provide an overview of current knowledge of SIRT1-p53 signaling in tumorigenesis. Given the vital role of the SIRT1-p53 pathway, targeting this axis may provide promising strategies for the treatment of cancer.


Assuntos
Neoplasias , Sirtuína 1 , Humanos , Sirtuína 1/genética , Sirtuína 1/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , NAD/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Carcinogênese
3.
Curr Res Food Sci ; 5: 1140-1147, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35865805

RESUMO

In this study, the optimal extraction conditions for the total flavonoids of Sedum aizoon L. (STF) were optimized by response surface methodology. Evaluation of the antioxidant in vitro of STF, and modulatory effects of glucolipid metabolism, and oxidative stress in mice with type 1 diabetes mellitus (T1DM). STF showed good antioxidant capacity in vitro. STF could improve glucolipid metabolism, organ coefficients, and antioxidant stress enzymes in T1DM mice effectively, reduce the damage to liver tissue, and regulate redox imbalance in the organism by modulating the Nrf2/Keap1/ARE signaling pathway. The results of this study could provide a theoretical reference for the application of Sedum aizoon L. in the development of auxiliary hypoglycemic functional foods and improvement of diabetes.

4.
Food Chem X ; 13: 100234, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35499036

RESUMO

We aimed to explore the effects of the 60Co-γ irradiated ginseng adventitious root (GAR) with different radiation doses on the hypoglycemic effects of its extract (GARSE) through in vivo and in vitro experiments. The total saponin of GARSE was increased by 4.50% after 5 kGy irradiation, and the 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging ability was enhanced by 5.10%. At 50 µg/mL, GARSE irradiated by 5 kGy displayed superior protective effects on human glomerular mesangial cells (HMCs) with high glucose damage. After feeding type 1 diabetes mellitus (T1DM) mice with GARSE irradiated by 5 kGy at 500 mg/kg·BW for 4 weeks, the glucose values was decreased by 16.0% compared with the unirradiated. The Keap1/Nrf2/HO-1 pathway was activated and the oxidative stress was attenuated, which further alleviated T1DM.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...